Article

Characteristic Analysis of the Ms6.8 Luding Earthquake Sequence in Sichuan, China, on Sept. 5, 2022

Min Zhao 1,2, Feng Long 1,2,*, Yue Gong 1 and Fang Du 1

1 Sichuan Earthquake Agency, Chengdu (610041), Sichuan, China
2 State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan (430077), Hubei, China
* Correspondence: icy1111@163.com

Received: April 28, 2023; Received in revised form: September 12, 2023; Accepted: January 8, 2024; Available online: March 31, 2024

Abstract: The Ms6.8 earthquake occurred in Luding County, Ganzi Prefecture, Sichuan Province, China at 12:52 p.m. on Sept. 5, 2022, is preliminarily analyzed in terms of regional tectonics, historical earthquakes, sequence characteristics and focal mechanism solutions. The results show that: 1) The magnitude difference ΔM between the main shock and the maximum aftershock, the energy ratio ER of the main shock to the aftershocks, the p-value and the estimated Mmax-value indicate that the Ms6.8 Luding earthquake sequence can be divided into the main shock-aftershock type (MAT). 2) The spatial distribution of the aftershocks, their corresponding b-value and expected maximum magnitude are obviously segmented, which reflect the complexity of the seismogenic tectonics. 3) According to the focal mechanisms obtained from the HASH program, the geometry distribution of the sequence, and the relationship between the sequence and the nearby faults, it can be inferred that the Moxi fault segment of the Xianshuihe fault zone is the seismogenic tectonics of the Ms6.8 Luding earthquake sequence.

Keywords: The Ms6.8 Luding Earthquake; Sequence Analysis; The Focal Mechanisms; Seismogenic Tectonics

1. Introduction

At 12:52 on September 5, 2022, local time, a Ms6.8 earthquake occurred in Luding County, Ganzi Prefecture, Sichuan Province, China. The epicenter is in the Hailuogou Glacier Forest Park, Minya Konka Mountain, only 39 km away from the Luding County and 47 km away from the Kangding City, where Ganzi Prefecture government is located. According to the earthquake intensity map released by the Ministry of Emergency Management (https://www.mem.gov.cn/xw/yglbgzdt/202209/120220911_422190.shtml), the maximum intensity of the event is IX degree. The earthquake has caused serious geological disasters, resulting in the damage to many buildings and infrastructure, causing serious casualties and property losses. As of Sept. 13, 2022, the earthquake and secondary geological disasters caused 93 deaths and 25 losses of communication. The disaster caused by the earthquake has caused widespread concern from all walks of life.

The Ms6.8 Luding earthquake occurred in the southeast segment of the Xianshuihe fault zone with complex geological tectonics (Figure 1). After the earthquake, international and domestic
seismologists also paid attention to the future strong earthquake risk of the Xianshuihe fault zone. Therefore, the regional tectonic background, historical earthquakes, sequence characteristics and focal mechanism solution of the $M_{S}6.8$ Luding earthquake are preliminarily analyzed in this paper. It is expected to provide a reference basis for the subsequent study and the seismic risk of the Xianshuihe fault zone.

2. Geological Settings and Historical Earthquakes

![Figure 1](https://example.com/figure1.png)

Figure 1. Geological tectonics and historical earthquake distribution along the Xianshuihe fault zone and its vicinity.

The $M_{S}6.8$ Luding earthquake occurred in the southeast segment of the Xianshuihe fault zone. The Xianshuihe fault zone is in the eastern margin of the Qinghai Tibet Plateau and the middle section of the north-south seismic belt. It is a large left-lateral strike-slip fault in the Songpan Ganzi orogenic belt, with strong Holocene activity. The fault has a total length of more than 400 kilometers, with an overall trend of N40°-50°W. It starts from the northwest of Ganzi in the northwest segment, passes Luhuo, Daofu, Kangding, and Moxi town in Luding in the southeast segment, and gradually weakens to the south of Xinmin town in Shimian, and finally disappears near the Gongyi Sea in Shimian [1-4]. The existing research results show that the activities of the Xianshuihe fault zone since the Holocene can be
divided into two segments with Huiyuansi pull apart basin as the boundary. The northwest segment is about 200 km long and consists of a single main fault, mainly left-lateral strike-slip [5-7]. The southeast segment has complex tectonics, mainly consisting of the Moxi fault segment in NNW direction and the fault segment composed of the Yarra River, Seraha and Zheduotang three branch fault, with a length of about 110 km. The Ms6.8 Luding earthquake located near the Moxi fault segment of the Xianshuihe fault zone with complex tectonics (Figure 1). The Moxi segment of the Xianshuihe fault zone starts from the north and extends to the southeast, passing Moxi, Ertaizi, Wandong, Menghugang, Tianwan and Xinmin, and then extends to Anshun. Later, the new activity of the fault is weakened. The strike is between N20°~40°W, dip SW or NE, and dip angle is N60°~80° [8-9].

The Xianshuihe fault zone is one of the fault zones with the most frequent strong earthquakes and large earthquakes in mainland China [10]. Since historical records, 13 earthquakes with Ms ≥ 6.5 have occurred along the Xianshuihe fault zone since 1725, including 6 events with Ms6.5-6.9 and 7 events with Ms7.0-7.9. Among them, the largest historical earthquake was the Ms7/4 Kangding earthquake in 1786 located in the southeast segment. The Ms6.8 Luding main event is just located about 35 km to the southeast of the Ms7/4 Kangding earthquake in 1786. The aftershocks extended to the southeast segment of the rupture zone of the Ms7/4 Kangding earthquake in 1786 [10-11].

3. Overview of Sequences

According to the Sichuan Seismic Network (SSN), about 4023 aftershocks with Ml ≥ 0.0 have been recorded by Sept. 20, 2022, including 63 aftershocks of Ml3.0-3.9, 3 aftershocks of Ml4.0-4.9 and 1 aftershock of Ml5.0-5.9, that is, the maximum aftershock of Ms4.5(Ml5.1) occurred on Sept. 7, 2022. The Ml ≥ 4.0 aftershocks are listed in Table 1.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Time of the event</th>
<th>Location</th>
<th>Magnitude</th>
<th>Focal depth km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y-M-D H:M:S</td>
<td>Longitude λ°E Latitude φ°N</td>
<td>Ms6.8</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>2022-09-05 12:52:18</td>
<td>102.08 29.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2022-09-05 12:56:34</td>
<td>102.18 29.40</td>
<td>4.5</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>2022-09-05 17:39:21</td>
<td>102.17 29.36</td>
<td>4.0</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>2022-09-05 19:26:20</td>
<td>102.18 29.48</td>
<td>4.2</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>2022-09-07 02:42:15</td>
<td>102.15 29.42</td>
<td>5.1/Ms4.5</td>
<td>17</td>
</tr>
</tbody>
</table>

The time-sequence of M-T, N-T and △T-T diagrams (Figure 2) show that the Ml ≥ 0.0 aftershocks are abundant after the mainshock, but the intensity of the aftershocks are not high. In order to reveal the sequence characteristics quantitatively, the magnitude completeness (Ml) is determined by the Goodness-of-fit test (GFT) [12] method as to Ml1.7 (Figure 3a), and then the b- and p-values, which demonstrate the stress state and temporal decay of the sequence, respectively, determined by fitting the G-R relationship [13] and the revised Omori’s law [14-15]. The results derived from the first 24 hours catalog of magnitude greater than the Ml show that the b-value is 0.696 (Figure 3a). This result reflects the strong stress disturbance at the early stage of the aftershock sequence. The calculated p-value is 1.24 (Figure 3b). It indicates that the early sequence attenuates...
rapidly after the main earthquake. The M_{max}-value, defined by a/b, is estimated to $M=5.2$ ($M=4.5$), which is very close to the actual biggest aftershock, the $M=5.1$ Shimian event at 02:42, Sept. 7, 2022 local time. It indicates that the maximum aftershock with high probability may have occurred, and the event in the sequence is not foreshock.

Figure 2. The time-sequence diagrams of $M-T$, $N-T$ and $\Delta T-T$.

Figure 3. Two fitting curves of the $M=6.8$ Luding earthquake sequence.

(a) The G-R relationship fit. (b) The revised Omori’s law fit.

Two methods are used to evaluate the type of earthquake sequence: one is the magnitude difference ΔM, denoted as the magnitude difference between the mainshock and the maximum aftershock [16], and other is the energy ratio E_r, defined as the elastic energy ratio of the mainshock.
to the whole sequence [17]. Generally, the elastic energy is estimated from the magnitude according to the formula [18].

$$ \log E = 1.44 M_s + 12.52 $$

The $\Delta M = 2.3$ and $E = 99.97\%$ indicate that the $M_s 6.8$ Luding earthquake sequence is a Mainshock-Aftershock Type (MAT). It can be inferred that there will be no aftershocks larger than the main shock magnitude in the sequence, which is consistent with the estimate of the M_{max}-value.

4. Spatial Evolution of Aftershocks

The epicentral map of the Luding earthquake sequence shows that the aftershocks are distributed along the south-east branch rupture of the Moxi fault segment of the Xianshuihe fault zone, with an overall NW trend and a dense aftershock area of about 65 km in the long axis and about 25 km in the short axis. The aftershock distribution along the fault is divided into three areas (dotted line in Figure 4). The aftershocks in the northern region show relatively low frequency and magnitude activities, strike NW-SE direction, and are consistent with the Moxi fault segment. The length of its major axis and minor axis are about 18 km and 8 km respectively. The aftershocks in the southern region have the same distribution trend, while the frequency and magnitude in the aftershock

Figure 4. Epicentral map of the $M_s 6.8$ Luding earthquake sequence.
sequence in the south region are significantly stronger than those in the northern region. The M_{L}4.0 aftershocks in the sequence, including the largest aftershock, all occur in the region. The length of its long and short axes is about 14 km and 8 km respectively. The aftershocks in the central region where the M_{S}6.8 earthquake is located have the highest seismic activity frequency. The aftershocks are distributed in the NEE and NW directions perpendicular to and along the Moxi fault segment, respectively. Different from the aftershocks in other two regions, the two axes of aftershocks distribution are about 23 km and 12 km separately.

Figure 5. Maps of spatial seismicity parameter.

DOI: https://doi.org/10.54560/jracr.v14i1.438
To study the spatial characteristics of the sequence, the seismicity parameter map of the aftershock area is drawn. The a-value diagram (Figure 5a) shows that the aftershock activity rates of the above three subregions are very high, and the cumulative composite frequencies of $M_c \geq 0.0$ events are greater than 3000. The b-value diagram (Figure 5b) shows that the south region has the lowest b-value, that is, the highest stress field. It is notable that the eastern part of the central region, where the Moxi fault segment is locked, also has a low b-value, while the b-value in western part is relatively high, which indicating the seismogenic tectonics in the central region are complicated. The M_{max} map (Figure 5c) shows that the maximum expected magnitude in the southern and central regions is relatively high, which may reach $M_c 5.5$, but it may be estimated to be 4.0 in the northern region. The p-value map (Figure 5d) demonstrated the seismicity in northern and southern regions decaying faster than that in central region, showing the segmentation difference of the seismogenic tectonics.

The historical earthquake sequences on the same fault are also of reference significance for studying and judging the subsequent earthquake trend, so the historical earthquake sequences on the Xianshuihe fault zone are also compared and analyzed. According to the existing research data, among the earthquakes with the $M_s \geq 6.5$ in the Xianshuihe fault zone, there are only two earthquake cases with clear earthquake types since 1970: the $M_c 7.6$ Luhuo earthquake occurred in 1973 is a mainshock-aftershock type sequence, with its maximum aftershock is a $M_s 6.3$ event (Figure 6a). The sequence is generated by strike-slip faulting and decayed rapidly; the $M_c 6.9$ Daofu earthquake occurred in 1981, with its maximum aftershock $M_s 3.9$ (Figure 6b), which is an isolate-type sequence, also in the strike-slip fault [19-21]. From the only two historical earthquake sequence cases, the earthquake rupture type is consistent with the strike-slip property of the Xianshuihe fault zone, and the sequence types are the mainshock-aftershock type and isolated type respectively. The two historical sequences mentioned above attenuated rapidly, and the largest aftershock occurred within 2 days after the main shock. Therefore, with the two historical sequences as a reference, the $M_c 6.8$ Luding earthquake sequence is unlikely to have subsequent aftershocks of the same intensity as the main shock.

![Figure 6. Historical earthquake sequence along the Xianshuihe fault zone.](https://doi.org/10.54560/jracr.v14i1.438)
5. Focal Mechanism Solution

First motion polarities of the $M_{S}6.8$ mainshock and the $M_{S}4.5$ event are picked from a total number of the 38 stations within the epicentral distance of 200 km, and then, the focal mechanisms are calculated by the HASH program [22-23]. The main shock and maximum aftershock have the same focal mechanisms (Figure 7 and Table 2), however, a bit difference in misfit due to a four reading errors caused by the relative lower signal-to-noise of the $M_{S}4.5$ event. Considering the trending direction of the Xianshuihe fault zone and the long-axis of the sequence, the NW-SE striking plane is determined as seismogenic fault plane, that is, the left-lateral strike-slip nodal 2 is the fault plane, which is consistent with the published results [24-27]. The azimuth of P-axis is NWW, which is consistent with the principal compressive direction [28-30], indicating the $M_{S}6.8$ Luding earthquake sequence is controlled by the local geological stress.

![Focal mechanism solution](image)

(a) The $M_{S}6.8$ earthquake on Sept. 5, 2022.
(b) The $M_{S}4.5$ aftershock on Sept. 7, 2022.

Figure 7. Focal mechanism solution of the mainshock and the maximum aftershock.

Table 2. Focal mechanisms for $M_{S}6.8$ and $M_{S}4.5$ events.

<table>
<thead>
<tr>
<th>Date of the event</th>
<th>Event M_{S}</th>
<th>Nodal 1</th>
<th>Nodal 2</th>
<th>P-axis</th>
<th>T-axis</th>
<th>B-axis</th>
<th>Misfit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>strike</td>
<td>dip</td>
<td>rake</td>
<td>strike</td>
<td>dip</td>
<td>rake</td>
</tr>
<tr>
<td>2022-09-05</td>
<td>6.8</td>
<td>247</td>
<td>81</td>
<td>174</td>
<td>338</td>
<td>84</td>
<td>9</td>
</tr>
<tr>
<td>2022-09-07</td>
<td>4.5</td>
<td>247</td>
<td>81</td>
<td>174</td>
<td>338</td>
<td>84</td>
<td>9</td>
</tr>
</tbody>
</table>

6. Discussion

Xianshuihe fault belt is one of the most active structures in western China, with behaviors in high slip rate (~10mm/a) and frequent reoccurrence period (~100 years). The ruptures of historic strong earthquakes almost cover the whole fault zone length. Although the $M_{S}6.8$ Luding earthquake has released some energy, the southern section of the Xianshuihe fault belt is still at risk of earthquake hazards, that’s because (1) the $M_{S}6.8$ Luding earthquake located in the seismic gap generated by the
rupture zone of the M\textsubscript{S}7.4 Luding earthquake, 1785 [11], the 64km-length newly ruptured area do not fulfill the historical gap, the rest parts (barriers or asperities) accumulate a lot of energy, (2) the southern segment of the Xianshuihe fault is in the Coulomb static stress increasing regions of the M\textsubscript{S}7.0 Lushan earthquake, 2013 [31] and M\textsubscript{S}6.3 Kangding earthquake, 2014 [32-33], which showing that the future strong earthquakes in this region is imminent.

7. Conclusions

The M\textsubscript{S}6.8 Luding earthquake occurred on the Moxi fault segment of the Xianshuihe fault zone at 12:52 p.m. on Sept. 5, 2022, local time is preliminarily analyzed in terms of regional tectonics, historical earthquakes, sequence characteristics and focal mechanism solutions. The conclusions are summarized as:

1) The magnitude difference \(\Delta M=2.3\) between the main shock and the maximum aftershock, the energy ratio \(E_r\approx 99.99\%\) of the main shock to the aftershocks, the \(p\)-value=1.24 and the estimated \(M_{\text{max}}\)-value indicate that the M\textsubscript{S}6.8 Luding earthquake sequence can be divided into the main shock-aftershock type (MAT).

2) The spatial distribution of the aftershocks, their corresponding \(b\)-value and expected maximum magnitude are obviously segmented, which reflect the complexity of the seismogenic tectonics. The sequence behavior in strong segmentation which can be divided into three regions with each seismic characteristic. The southern region of the aftershock distribution is a fast decayed segment with high stress level and seismicity rate. The central region of the aftershock distribution, where the mainshock located at, showed an inhomogeneous \(b\)-value distribution, indicating the complexity of the seismogenic tectonics. The northern region of the aftershock distribution has the lowest stress level and expectation maximum magnitude.

3) According to the focal mechanisms obtained from the HASH program, the geometry distribution of the sequence, and the relationship between the sequence and the nearby faults, it can be inferred that the Moxi fault segment of the Xianshuihe fault zone is the seismogenic tectonics of the M\textsubscript{S}6.8 Luding earthquake sequence. Take the trending directions of the Xianshuihe fault zone and the long-axis of the whole sequence into account, Node 2 in focal mechanism is speculated to be fault plane, showing a left-lateral strike-slip faulting, which is consistent with the movement of the Xianshuihe fault zone and the local stress map. From the geometry distribution status and the relationship between the sequence and the faults nearby, it can be inferred that the Moxi fault segment of the Xianshuihe fault zone is the seismogenic tectonics of the M\textsubscript{S}6.8 Luding earthquake.

Contributions: M.Z. and F.L. mainly completed the data processing and writing of the manuscript. F.D. supported the completion of the manuscript. Y.G. participated worked for the manuscript. All authors contributed to the article and approved the submitted version.

Acknowledgments: The \(b\)-value calculation in this article comes from the ZMAP package (Wiemer, 2001); a part of the figures in the paper were plotted with GMT (Wessel and Smith, 1991). We also would like to thank the reviewers for their helpful comments.

Funding: This research was funded by State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS, grant number SKLGED2023-4-5.
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

Copyright © 2024 by the authors. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).