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Abstract 

Based on an improved risk assessment index system, this paper constructs an eco-environmental disaster risk 
assessment model during coalbed methane industrialization development in China by using intuitionistic fuzzy 
sets to describe the uncertain risk information, and the transformed interval value of Mamdani intuitionistic fuzzy 
neural networks model. Then, the validity of the model is verified by simulation tests. Furthermore, the assessment 
results are compared with those obtained by fuzzy neural networks model. Results show that suggested model has 
multidimensional nonlinearity and global approximation characteristics. By the procedure of “fuzzification - 
fuzzy-rules - defuzzifier”, the output conversion from uncertainty quantitative indicators to accurate risk 
assessment values can be effectively realized. Compared with the fuzzy neural networks model, the suggested 
model has better accuracy and stability. The risk assessment value calculated by the suggested model fairly 
matches the expected one. The study supplies a decision support for routine supervision and risk precaution and 
management on one hand, and enriches the theoretical research of the eco-environmental risk assessment of 
coalbed methane industrialization development on the other hand. 
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1. Introduction 

Coalbed methane (CBM) is one of the most reliable 
supplements to oil and gas. However, with the rapid 
increase of CBM production, regional ecological risk 
problems become increasingly prominent. Let’s take the 
eco-environmental deterioration issue in Qinshui basin, 
Shanxi province of China as illustration. Wang (2014) 
conducted an indoor experiment of soil column simulated 
irrigation for a long time and finally drawn the 
conclusions: the produced water of South Shizhuang 
CBM test area was with high-salinity, high-chloride and 
alkalinity characteristics, and the soil salinity increased, 
water retention capacity declined after a long-time 
irrigation, which resulted in massive crop failures. Liu et 
al. (2014) selected water-formation samples, reservoir 
hydrops samples, bottom sediment samples of Fanzhuang 
area for test, and confirmed that the heavy metal content 
of arsenic, cadmium, stannum, etc. in produced water is 
high. Meanwhile, the topsoil around CBM wells were 
confronted with the contamination risk of heavy mentals 
when the accumulation, migration and enrichment of 
such kinds of chemical elements happened. Hu et al. 

(2009) insisted that during the process of CBM 
production, a large amount of draining water from coal 
seams would lead to the contamination of surface water, 
the decline of groundwater level, the disruption of aquatic 
ecological environment, and the denudation of soil. Li et 
al. (2014) investigated the region of Zhengzhuang and 
suggested that the severely supracrustal and hypogeal 
disturbance during the construction and production period 
of CBM industry made great changes on regional 
underlying topography, which may result in the 
disruption of vegetation, the newly arose soil erosion, and 
the damage of climatope. Besides, since the dominant 
component of CBM is methane (CH4), the greenhouse 
effect is 22 times over carbon dioxide (CO2) (Song et al., 
2012), and the leak of CBM may bring the conditions of 
safety production and ecological civilization into the 
grave threat. Therefore, we should strength the risk 
management of ecological environment on CBM 
industrialization development, whose premise is to 
reasonably and reliably assess such risks by quantitative 
approaches. 

America and Canada early carried out the study the 
issues of the eco-environmental risk assessment on CBM 
exploitation. In the late twentieth century, Beckstrom and 
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Boyer (1993) analyzed the aquifer-protection works on 
CBM producing wells and deep cathodic-protection 
groundbeds. Chafin et al. (1996) studied the effect of 
hydrofracture and the degradation of groundwater level 
on eco-environmental risk. U.S. Environmental 
Protection Agency (EPA) evaluated the impact of the 
hydrofracture of CBM reservoirs on the drinking water 
resource by stages, and respectively from three aspects: 
actual observation records, experimental data, and 
theoretical analysis. Cheung et al. (2009, 2010) assessed 
the impact of the geochemistry of trace metals and rare 
earth elements in produced fluids or shallow groundwater 
in CBM producing regions of Alberta, Canada. Dahm et 
al. (2013) utilized 3-D fluorescence spectroscopy to 
distinguish the naturally occurring organic from 
anthropogenic chemical compounds in the CBM 
produced water in order to recognize the risk of aquifer 
contamination. Aguiler et al. (2014) analyzed the effect of 
“resource endowments, economics and the environment” 
in conventional, tight gas, shale and coalbed methane 
reservoirs. 

The studies in China mainly took qualitative methods, 
and the quantitative approaches are relatively few. For 
instance, Pei et al. (2015) applied the evaluation model of 
pressure-state-response (PSR) to construct the framework 
and index system of CBM ecological system. Sun et al. 
(2015) set up an index system of ecological risk 
assessment on CBM industrialization development, based 
on the logic framework “Hazard-induced environment – 
Caused-hazards – Hazard-affected bodies – Disaster 
losses”. Nonetheless, there is a lack of comprehensive 
and effective quantitative evaluation models. The reason 
is twofold. On one hand, it is hard to acquire the actual 
data, and there is much uncertainty in the obtained data 
information.   As a result, the specialized database has 
not been set up that can efficaciously link among the 
environmental data from different regions. On the other 
hand, it is due to the lack of the unified evaluation index 
system and valid quantitative criteria. Therefore, this 
paper plans to screen and optimize the index system 
proposed by Sun et al. (2015), and then improve the 
quality of data processing with uncertain risk information 
by means of the intuitionistic fuzzy numbers transformed 
by interval values. Ultimately, based on the Mandani 
intuitionistic fuzzy neural network, an eco-environmental 
risk assessment model for the CBM industrialization 
development is constructed. 

 
 

2. Optimization of Eco-environmental Risk 
Assessment Index System 

Sun and Xue (2015) constructed an eco-environmental 
risk assessment index system of CBM industrialization 
development based on the theory of disaster system, and 
defined the eco-environmental risk of CBM, RCBM, as the 
set {hazard-induced environment, caused-hazards, 
hazard-affected bodies, disaster losses}, where the 
stability of hazard-induced environment ( E ), the risk of 
caused-hazards ( C ), and the vulnerability of 
hazard-affected bodies ( B ) are defined to represent the 
probability of eco-environmental risk while the damage 
of disaster losses ( L ) are designed to reflect the 
probability of risk losses. The combination of them 
constitutes the eco-environmental risk of CBM 
industrialization development.  

Based on this model, the paper makes the following 
modifications:  

(1) Transform some indexes into relative ones. For 
instance, use “proportion of economic loss” instead of 
“economic loss”. In doing so, the indexes become 
comparable and the calculation is simplified. 

(2) Optimize the exposure level, adaptive capacity and 
anti-risk capability of hazard-affected bodies from three 
aspects: personnel, property and materials. For instance, 
in considering that with the increase of CBM resource 
exploration, the more hazard-affected bodies ( B ) are 
exposed in ecological risk and thus the greater probability 
of the risk could happen. Hence, the index “resource 
exposure degree of CBM” is added.  

(3) Specialize the artificial caused-hazard in 
caused-hazards. For instance, to assess the groundwater 
pollution and soil pollution, we can specialize in the 
impact of comprehensive hazard behaviors by means of 
“standard evaluation index of major groundwater 
pollution factors” and “Nemero pollution index of soil”. 

Based on the theory of rough set and Rosetta software, 
the paper finally determines an index system by screening 
and optimizing evaluation indexes, which is shown in 
Table 1.  

3. Quantification of Risk Assessment Indexes 

3.1. Fuzzification method  

As shown in Table 1, the ecological risk information itse- 
lf has uncertainty in general. For example, in the practical 
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Table 1. Eco-environmental Risk Assessment Index System of CBM Industrialization Development 

First level index Second level 
indexes Third level indexes 

1e  complexity of the hydrogeological condition 

2e  mechanization degree 

The stability of 
hazard-induced 

environment 
E  

3e  reliability of mechanical equipment 

1c  impact of bad weather 

2c  ratio of maximum ground-level concentration 
to standard concentration of major air pollutants 

3c  standard evaluation index of groundwater 
major pollution factors 

4c  Nemero pollution index of soil 

The risk of 
caused-hazards 

C  

5c  percentage of forestry and grass coverage 

1b  resource exposure degree of CBM 

2b  ability of personal risk prevention 
The vulnerability of 

hazard-affected 
bodies 

B  3b investment proportion of prevention 
construction funds 

1l  proportion of economic loss 

2l  incidence of occupational diseases 

Eco-environmental risk 

of CBM 

industrialization 

development 

CBMR  

The damage of 
disaster losses 

L  
3l  casualty rate 

risk assessment process, we may frequently 
encounter the situation that experts are hesitant 
in their judgments over risk information, or that 
experimenters are hard to obtain the data 
precisely due to the systematic error. With the 
emergence of intuitionistic fuzzy sets theory 
(Atanassov, 1986),   the nonmembership 
functions and hesitancy degree functions are 
added to general fuzzy numbers, which improves 
the quality of data processing and realizes the 
precise expression of fuzzy uncertainty 
information. The definition of an intuitionistic 
fuzzy set is as follows: 

Definition 1 Let X be a given universe of 
discourse, and an intuitionistic fuzzy set is 
defined by 

      , ,A AA x x x x x X     
  (1) 

where ( )A x   and ( )A x   are respectively the 
membership function and non-membership 
function of set A~ , which respectively means the 

degree to which x  belongs to A~  and the 
degree to which x does not belong to A~ such that 
0 ( ) 1A x  , 0 ( ) 1A x   and 0 ( )A x   

( ) 1A x  . In addition, the hesitancy degree 

function is ( ) 1 ( ) ( )A A Ax x x       , and the 
smaller value corresponds to the more certain 
risk information.  

An intuitionistic fuzzy set is equivalent to an 
interval-valued fuzzy set (Yuan 2013). 
Considering the inequality ( ) 1 ( )A Ax x    , the 

intuitionistic fuzzy set A~  can be transformed 
into an interval-valued fuzzy set using the 
following formula: 

     , ,1A A A AA x A x          
   (2) 
The membership function ( )A x 

 can be of 
any type including Gaussian, Sigmoid or 
Triangular function etc. We select the Gaussian 
membership function in this paper in considering 
that the function has high smoothness. The 
Gaussian membership function is defined by and 
lower bounds of the interval-valued fuzzy 
numbers respectively as shown in Fig. 1. 

2,( ) ( , ) exp ( )A

xx f x  



 
 
 

    (3) 

where  and  represent respectively the curve 
center and curve width of the Gaussian 
membership function. 

Substituting (3) into (2), and combining with 
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the features of Gaussian function, intuitionistic 
fuzzy numbers can be transformed into interval 
valued fuzzy numbers with the same  

curve center ij and different curve widths 

ij , as shown through the following (4) to (6): 

      iijiiji xxxA   ,~        (4)                

2( ) exp[ ( ) ] , 1,2  ; 1,2i ij
ij i

ij

x
x i n j m










     (5) 

2( ) exp[ ( ) ] , 1,2  ; 1,2i ij
ij i

ij

x
x i n j m










     (6) 

where ( )ij ix   and ( )ij ix  denote the upper  
In this way, fuzzy uncertainty information is 

theoretically expressed as Gaussian intuitionistic 
fuzzy number so that the actual expression of 
fuzzy information is realized. 

3.2. Fuzzification of risk evaluation 
indexes 

Following the method of fuzzification method in 
Section 3.1, the indexes from Table 1 can be 

fuzzified. 
(1) Complexity 1

~e of the hydrogeological 

condition is a key index of natural 
hazard-induced environment, which is 
determined by three factors: the stability of coal 
seam, the vulnerability of aquifer and the 
sensibility of groundwater environment. For its 
fuzzification, we refer to “IF-THEN” risk 
decision rules (Xue 2014). Furthermore, we can 
obtain five output parameter values: very simple, 
simple, general, complex, very complex after the 
experts input the fuzzy linguistic variables of the 
above three factors as shown in Table 2 and Fig. 
2. By Section 3.1, 1

~e  is an intuitionistic fuzzy 
number with the Gaussian membership function. 

(2) Mechanization degree 2
~e  is determined 

by the utilization rate of mechanical equipments, 
the mine integrated unit yield of CBM and the 
informationization degree of management (Xie 
et al, 2012). 2

~e  can be fuzzified by means of 
“IF-THEN” rules presented in Table 2. and Fig. 
2. 

 

Fig. 1. Transformation of a Gaussian Intuitionistic Fuzzy Number into an Interval-valued Fuzzy Number. 

Table 2. “IF-THEN” Risk Decision Rules 

Input parameters Output parameters 
Coal seam 

stability 
Aquifer 

vulnerability 
Groundwater 

sensitivity 
Hydrogeological condition 

complexity 
instable vulnerable sensitive very complex 
instable vulnerable sensitive very complex 

        
stable invulnerable insensitive very simple 
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 (3) Reliability 3
~e  of mechanical equipmen 

-ts is another key index of anthropogenic hazard- 
induced environment. We focus on the security 
attribute, i.e. the ability with which mechanical 
equipments can prevent from the environmental 
disruption, casualties and property loss. 3

~e  
could be readily calculated by the following: 

 3 exp s me t           (7) 

where s
~

is the fuzzy failure rate of the 
equipments or the system which may cause the 
contamination accident, and mt

~ is the fuzzy time 
of fulfilling CBM productive tasks. 

(4) Impact degree 1
~c of bad weather is 

determined by three factors: the damage degree 
{strong, general, weak}, the time of duration 
{long, medium, short} and the affected areas 
{large, medium, small}. 1

~c  can be  estimated 

by experts, and fuzzified in the same way as 1
~e . 

(5) Ratio 2
~c of maximum ground-level 

concentration to standard concentration of major 
air pollutants is used for evaluating the impact of 
atmospheric environment. Usually, 1 to 3 major 
pollutants are chosen and the ratio of each 
pollutant is calculated, and 2

~c is the 
fuzzification of the maximum ratio: 

 
3 1

2 01
max 100%m mm

c C C 


      (8)                              

where mC~  denotes the fuzzy value of 
maximum ground-level concentration of the 

-m th pollutant, and 0 mC is the standard 
concentration value of ambient air quality 

(Ministry of Environmental Protection of the 
PRC, 2008). 

(6) The standard evaluation index 3
~c of 

major pollution factors of underground water is 
used to estimate the impact on groundwater due 
to CBM project. The major pollution factors 
include each pollutant (water quality factor) 
whose ratio of accumulative pollution load is 
over 70%. 3

~c  could be computed as follows: 

  1-
3

~max~
skkk

QQc        (9) 

where kQ~ denotes the fuzzy mass concentration 

of the -k th major pollution factor and 

skQ~ denotes the corresponding standard mass 
concentration(Ministry of Environmental 
Protection of the PRC, 2008). 1~

3 c  indicates 
that the monitoring value is over the stipulated 
one, and the larger value means the severer 
pollution.  

(7) The Nemero pollution index 4
~c of soil is 

used to estimate the comprehensive environmen- 
tal quality which is computed using the 
following equation:  

    222

max
4 2

~~
~













 
 avezzzz SCSC

c   (10) 

where 
zC~  stands for the fuzzy value of heavy 

metal content in soil, zS  denotes the standard 
value of soil environmental quality, 
 max
~

zz SC and  avezz SC ~  indicates the 
maximum and average fuzzy values of a certain 
heavy mental pollutant respectively.  

(8) Percentage 5
~c  of forestry and grass 

 

Fig. 2. The Complexity 1
~e  of Hydrogeological Conditions. 
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coverage is designed to estimate the situation of 
soil and water conservation and ecological 
functions, which is computed by the formula:  

  1
5

~~  TFG SSe           (11)                                

where FGS~ denotes the fuzzy total area of 

vegetation, and TS  denotes the affected area 
due to CBM project. 

(9) Exposure degree 1
~b of CBM resource is 

computed by  

              1

1
~~~ 

 AM QQb         (12) 
where MQ~ denotes the fuzzy value of 

exploitation quantity CBM, and AQ~  denotes 
the fuzzy value of CBM recoverable reserves.          

(10) Risk prevention ability 2
~b of personnel 

is to reflect the anti-risk and adaptive capabilities 
of hazard-affective bodies (personnel), including 
the employees’ professional quality, the situation 
of risk prevention skills training and the 
standardization of emergency plan, which are 
described by means of language values: good, 

medium, bad. Then 2
~b  is obtained in the same 

way as 1
~e . 

(11) Investment proportion 3
~b of prevention 

construction funds reflects the anti-risk and 
adaptive capabilities of hazard-affected bodies 
(property), which is defined by 

  1
3

~~~ 
 TCRP GFb          (13) 

where RPF~  denotes the ratio of risk prevention 

funds and TCG~ is the total construction funds. 

(12) Proportion 1
~l of economic loss reflects 

the economic loss caused by eco-environmental 
risk, which is calculated by                     

   1
1

~~~~ 
 OVIELDEL GFFl     (14)                        

where DELF~  is the direct economic loss, IELF~ is 

the indirect economic loss and OVG~ is the gross 
output value. 

(13) Incidence 2
~l of occupational diseases 

indicates the injury caused by nonvital but 
persistent disaster losses, which is calculated by 

 1
2 ( )OD WP Pl   

          (15)                             

where ODP~  is the number of patients with 

occupational disease and WP~  is the total 
numbers of people in CBM production activities. 

(14) Casualty rate 3
~l reflects the damage and 

loss caused by abrupt momentous injury 
accidents which is calculated by            

  1
3

~~~ 
 WCF PPl         (16)                             

where CF
~P  is the number of fatalities due to the 

pollution or destructive accident and WP~  is the 
same as in Formula (15) . 

4. Construction of Comprehensive         
Assessment Model 

Based on the fuzzy quantization in Section 3, by 
inputting fuzzy rules and training samples 
obtained from expert system into Mamdani 
intuitionistic fuzzy neural networks (MIFNN) 
using comprehensive generated method (Lei et 
al, 2014) and by adjusting the learning algorithm 
of the model, we can get the actual outputs of 
eco-environmental risk assessment in CBM 
industrialization development. 

4.1. Model structure 

The MIFNN model is a fuzzy multilayer feed 
forward neural network system with multi-input 
and single-output structure. By referring to the 
hierarchical structure of self-organizing 
intuitionistic fuzzy neural network model 
proposed by Xu et al (2010) and Lei et al (2014) 
and combining with fuzzy control theory, the 
MIFNN model can be described as a six-layer 
networks model as shown in Fig.3. 

The first layer, the layer for input variables, 
inputs variable values into the fuzzy neural 
system. Owing to the fuzzifier in Mamdani 
model, the input values should be the exact 

values 1 3( , , )Te l . 
The second layer, the layer for fuzzy linguistic 

variables, is designed for inputting attribute 
functions (membership functions and 
non-membership functions). By Formula (4) 
through (6), we denote the attribute functions by 
interval-valued Gaussian membership functions, 
and the output values gained by each node are 

interval-valued fuzzy sets [ , ]ij ij   . Then the 

vector of the fuzzy sets  Tle 31
~,,~  is obtained.  
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The third layer, the layer for inference rules, is 
designed for marching the antecedent of 
interval-valued fuzzy rules. Each node in this 
layer represents an antecedent of the fuzzy rules, 
and the output value of the thj  node 
is ,i i i    . Meanwhile, in order to reduce 
the information loss, we replace the  and   
in the model respectively by the addition and 
multiplication operations in real numbers. 

14

1
j ij

i

  



 , 
14

1
j ij

i

  



     (17)                         

The forth layer, the layer for output linguistic 
variables, outputs the consequent of fuzzy rules 
of each node in the upper layer. The output 
linguistic variable of the thj  node is the 
interval-valued fuzzy set: 

     31
~~,,~ leijijjjj     (18)                   

The fifth layer, the layer for output processing, 
is defuzzification for which the center average 
defuzzifier is utilized. The output values 

are   RRR ,~
 and R and R are defined 

by 

1

1

u

j j
j

u

j
j

R
 



 











, 1

1

u

j j
j

u

j
j

R
 



 











  

(19)                          

where u is the number of fuzzy rules. 
The sixth layer, the layer for output results, 

shows the risk assessment value CBMR of CBM 
industrialization development, based on the 
intuitionistic fuzzy sets theory of interval values 
and the defuzzification of center average 
defuzzifier. The exact value CBMR , is the 

satisfactory stack result of the input information 
from the risk assessment indexes in the network 
system. 

                          

2CBM

R R
R

 
          (20)                               

After the processing of six layers of network 
structure in the MIFNN model, we 
obtain CBMR as 

14 1414 14

1 1 1 11 1
14 14

1 11 1

( ) ( )

2 2

u u

ij ij i ij ij i
j i j ii i

CBM u u

ij ij
j ji i

x x
R

   

 

   

    

 

  

 
    

  
          (21) 

Meanwhile, according to the universal 
approximation theory, there must be a Gaussian 
fuzzy logic system, in which any given function 
can be approached with any precision. The 
global approximation of MIFNN model can be 
readily verified. 

4.2. Self-adaptive learning algorithm of the 
model 

With the MIFNN model for eco-environmental 
risk assessment of CBM industrilization 
development, the correspondence between risk 
assessment indexes and the real output value 

CBMR is obtained after some repeated learning 
training. 

Now assume that the desired output value 
is R . Then the squared error function 

is
2

2

( )CBM
P

R R
E


 . Substitute (5) and (6) into 

 

Fig. 3. Mamdani Intuitionistic Fuzzy Neural Network Model. 
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(21) to obtain the transformed fuzzy system 
which possesses the curve center ij , the curve 

width ij (calculated by the average value of 

ij  and ij  ) of Gaussian membership function 

and ij ( calculated by the average value of 

ij  and ij ). 
By the algorithm of first-order gradient search, 

the adjusted variables ij , ij and ij can be 
expressed by  

( 1) ( ) P
ij ij

ij

E
n n  




   


   (22) 

 

( 1) ( )

( 1) )(

P
ij ij

ij

P
ij ij

ij

E
n n

E
n n

  


  


 



 




   




   

   

(23)  

( 1) ( )

( 1) ( )

P

ij

P

ij

ij ij

ij ij

E
n n

E
n n

  


  






 

 


   
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Then, we can obtain the calibrated output 
surface. 

5.  Case Study 

In this section, we utilize the sample data 
obtained by laboratory simulation to analyze the 
reasonability feasibility and superiority of the 
MIFNN model in Section 4. 

5.1.  Data sources and preprocessing 

Our data come from the corresponding scenario 
simulations and experts’ experiences. The fuzzy 
rules and training samples are obtained from the 
comprehensive generated method. The 
input-output relation surfaces are obtained after 
repeated learning trainings by Matlab software, 
which are shown in Fig. 4. These 3-dimensional 
relation surfaces are relatively smooth, which 
verifies the reasonability of fuzzy rules. 

5.2. Results analysis 

Now we analyze the simulation results of the 
model through 50 groups of cases which are  

 
（a）Ecological Risk-occupational Disease-casualties  

 

（b）Ecological Risk-groundwater-soil Contamination 

      
（c）Ecological Risk-personnel Prevention-air 

Contamination 

 

（d）Ecological Risk- precaution Funds-personnel 
Prevention 

Fig. 4. Relation Surfaces 

selected randomly and partial input and output 
values are shown in Table 3. Take the No.3 
group of data in Table 3 as an example. The 
attribute characteristics of eco-environmental 
risk in CBM industrialization development in 
this group are: the hydrogeological condition is 
complex (the stability of coal seam is medium, 
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the vulnerability of aquifer is medium, and the 
sensitivity degree of the groundwater 
environment is sensitive); the degree of 
mechanization is high (the utilization rate of 
mechanical equipments is high, the mine 
comprehensive yield of CBM is high, and the 
informationization degree of management is 
low); the average failure rate of mechanical 
equipments is 4 16.25 10 h  , and they can 
perform production tasks normally within 
7 24h ; the impact of bad weather is low (the 
damage degree is weak, the time of duration is 
medium, and the affected area is small); the ratio 
of the maximum ground-level concentration to 
the standard concentration of major air 
pollutants is 73%; the standard index evaluation 
of groundwater major pollution factors is 1.15; 
the Nemero pollution index evaluation of soil is 
1.45; the percentage of forestry and grass 

coverage is 18.3%; the resource exposure degree 
of CBM is 23.3%; the ability of personal risk 
prevention is good (the employees’ professional 
quality is medium, the situation of risk 
prevention skills training is good, and the 
standardization of emergency plan is medium); 
the investment proportion of prevention 
construction funds is 1.78%; the proportion of 
economic loss is 2.65%; the incidence of 
occupational diseases is 6.1%; and the casualty 
rate is 0.96%. Calculated with the MIFNN 
model, the risk assessment value is 0.4574, 
which is the medium risk level as anticipated, 
which indicates that the eco-environment is 
mildly contaminated, and the situation is 
manageable and can be controlled. The 
administrators should strength the supervision 
and precaution.  

 

Table. 3. The Input and Output Values of Attribute Parameters in CBM Eco-environmental Risk 

Num. 1e  2e  3e  1c  
 

2c
 

3c  4c  5c  1b  2b  3b  1l  2l  3l  Outputs 

1 0.83 0.67 0.12e  0.33 39 0.86 0.67 21.5 13.3 0.50 2.52 1.76 4.33 0.64 0.2639 

2 0.83 0.67 0.18e  0.33 80 1.27 1.52 16.4 36.7 0.67 1.01 2.96 9.96 1.63 0.5215 

3 0.67 0.67 0.11e  0.17 73 1.15 1.45 18.3 23.3 0.67 1.78 2.65 6.10 0.96 0.4574 

4 0.83 0.50 0.32e  0.50 86 1.48 1.83 7.7 33.3 0.33 0.94 3.83 8.29 1.41 0.6605 

5 0.50 0.83 0.03e  0.17 57 0.76 0.95 23.9 16.7 0.83 2.62 1.85 5.53 0.92 0.1517 
… … … … … … … … … … … … … … … … 
46 0.83 0.67 0.06e  0.33 55 1.12 1.72 13.9 26.7 0.67 2.03 2.61 5.31 0.90 0.4050 

47 0.67 0.67 0.19e  0.33 87 2.35 3.01 6.6 50.0 0.33 0.82 6.17 13.22 2.19 0.8982 

48 0.83 0.67 0.21e  0.50 63 0.93 0.97 15.3 23.3 0.50 2.41 2.35 6.39 1.06 0.3046 

49 0.50 0.83 0.17e  0.33 45 0.82 0.86 16.5 16.7 0.50 2.37 2.23 5.28 0.89 0.2797 

50 0.83 0.50 0.32e  0.67 92 1.89 2.23 9.8 40.0 0.17 0.56 4.85 10.35 1.74 0.7992 

 

5.3. Comparative analysis with the FNN 
model 

In order to illustrate the superiority of the 
MIFNN model, we compare it with the fuzzy 
neural networks (FNN) model. To increase the 
comparability, we employ the simulation cases 
in Table 3 and apply the FNN model. The 
comparative analysis is based on the upper and 
lower bounds of the interval values in formula 
(4)-(5). 

   Fig.5 shows that both the MIFNN and 

FNN models could reflect the level of 
eco-environmental risk assessment in general. 
However, some values obtained by the FNN 
model are out of the interval values of 
intuitionistic fuzzy sets, e.g. the data in the 
No.13 and No.41 groups. In view of this, the 
further analysis for the evaluation quality of the 
both models is needed. Calculate respectively 
the degree of dispersion （ MIFNN ， FNN ）and 

the coefficient of variation ( MIFNNCV ， FNNCV ) 

which are shown in Table 4. 
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Table. 4. The Evaluation Comparison of MIFNN and FNN 

 MIFNN FNN Numeric 
comparison Result analysis 

  0.0507 0.0646 
MIFNN FNN

   
The stability of MIFNN model is superior to FNN 
model 

CV  0.4940 0.5712 
MIFNN FNN

CV CV  
The accuracy of MIFNN model is superior to FNN 
model 

It can be seen from Fig.5 and Table 4 that the 
stability and accuracy of the MIFNN model are 
superior. Therefore, it is more suitable for the 
eco-environmental risk assessment in CBM 
industrialization development. 

6. Conclusions 

This paper provides a method of eco-environ 
-mental risk assessment during CBM 
industrialization development based on the 
MIFNN model with both nonlinearity and 
global-approximation characteristics, by 
optimizing the index system and utilizing 
Atanassov intuitionistic fuzzy sets to improve 
data quality. The rationality and validity of the 
model are verified by simulation cases. It can be 
concluded that the expected risk level of 
eco-environment is in conformity with the 
assessment results. The comparative analysis 
indicates that both the MIFNN and FNN models 
are effective in assessing the risk level of 
eco-environment; however, the former model is 
superior to the latter as far as stability and 

accuracy are concerned. Therefore the 
application of the MIFNN model on empirical 
study will provide a decision basis for ecological 
supervision and risk precaution and management. 
Nevertheless, the number of attribute indexes in 
the model is relatively large, which results in 
some defects on precision, though we effectively 
adjust parameters in fuzzy rules and training 
samples. Therefore, we will further improve the 
risk assessment model by trimming and 
optimizing fuzzy inference rules and taking 
multidisciplinary complementary advantages in 
future. Meanwhile, we will develop evaluation 
software to implement the computer 
management of eco-environmental risk 
assessment on CBM industrialization 
development. 
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